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Abstract- In this paper a 1-0 model of the beam theory is derived from the 3-D elasticity theory
problem for a beam having initial stresses. We consider a thin inhomogeneous beam of periodic
structure whose diameter and period are comparable in order (the classical approach cannot be
applied). The transition from the 3-D elasticity theory problem to the 1-0 beam problem is made
on the basis of a modified two-scale expansion homogenization method without any simplified
assumptions. The obtained 1-0 modes correspond to the model of the beam subjected to the axial
force and beam subjected to moments. The obtained models are in agreement with the classical
models for homogeneous cylindrical beams. ([) 1998 Els(~vier Science Ltd. All rights reserved.

INTRODUCTION

The asymptotic homogenization method, widely used for monolithic composites (see
e.g. Bensoussan et al., 1978; Sanchez-Palencia, 1980; Bakhvalov and Panasenko, 1989;
Aboudi, 1991; Nemat-Naser and Hori, 1993; Kalamkarov and Kolpakov, 1997; and
references in these books) are now being used to study non-homogeneous bodies occupying
thin regions-plates and beams. In the works by Ciarlet and Destuyner (1979), Kohn and
Vogelius (1984), Caillerie (1984), Panasenko and Reztsov (1987), transition from a 3-D
elasticity problem to plate theory problem was made, in the paper by Kolpakov (1991),
transition from a 3-D elasticity problem to beam theory was made.

In all the papers above the 3-D problem with no initial stresses were studied, In the
present paper transition from a 3-D elasticity problem with initial stresses to a beam theory
problem is made. It is made on the basis of a two-scale asymptotic method used earlier for
monolithic composites and plates (see the references above) and modified for beam in the
above mentioned paper by Kolpakov (1991).

The accounting of the initial stresses plays an important role in the mechanics of
structures, in particular, in the stability of structures. Then, the deriving ofan asymptotically
exact model of a non-homogeneous beam with initial stresses seems to be practically
important.

We will consider the non-homogeneous beam of periodic structure (which are widely
used in modern structures). The non-homogeneity of the beam can be a result of both the
non-homogeneity of the material the beam is made of, and non-homogeneity of the beam
geometry. Both cases will be covered by our consideration. The classical uniform beam is
the partial case of the beam under consideration.

Earlier the homogenization problem for bodies with initial stresses was studied for
monolithic composites in the works of Kolpakov (1990, 1992). The homogenization prob
lem for plate with initial stresses was studied in the work of Kolpakov (1987) on the basis
of the two-dimensional plate equations (i,e, for the plate having a thickness much smaller
than the dimension of inhomogeneities).

As it will be seen, the analysis in the case under consideration differs both from the
analysis for monolithic composites with initial stresses and thin bodies with no initial
stresses. The difference between the given problem and the problems examined in the works
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considering the structures with no initial stresses (see Bensoussan et at. 1987; Sanchez
Palencia, 1980; Kohn and Vogelius, 1984; Caillerie, 1984; Kolpakov, 1991; Kalamkarov
and Kolpakov, 1997) is the asymmetry of the coefficients, requiring more detailed analysis
of the problem. The difference between the given problem and the problems for a stressed
monolith body examined in the works by Kolpakov (1990, 1992), is connected with the
difference of asymptotic expansions for the monolithic body, plate and beam (see Bensous
san et at., 1978; Caillerie, 1984; Kolpakov, 1991; Kalamkarov and Kolpakov, 1997).

As it will be seen from the discussion below, the order of the initial stresses relative to
the characteristic diameter of the beam e, plays a significant role in the problem. To account
for this, we take the initial stresses at in the form at = e-3a*~-3) +e- 2a*};-2).

I. FORMULATION OF THE PROBLEM

We will examine a body of periodic structure obtained by repeating a certain small
periodicity cell (PC) Pe among the Ox]-axis (Fig. 1). Here e is the PC characteristic dimen
sion, which is assumed to be small (that is formalized in the form e~ 0). As a result, we
have a body of periodic structure with the small diameter-a 3-D beam. For e~ 0 the 3-D
beam "tightens" to the segment [-a, a] at the Ox1-axis (Fig. l)-a l-D beam. Our aim is
to derive a model describing the l-D beam.

The starting point of our investigation is the exact 3-D formulation of an elasticity
problem for a body with initial stresses without any simplified assumptions, presented in
the book by Washizu (1982). In accordance with this model, the equilibrium equations of
the beam as a 3-D elastic body with initial stresses can be written in the form

The boundary conditions can be written in the form

(1.1)

s n

T

---
Fig. 1. The beam of periodic structure and those periodicity cells in the "fast" variables y = X/E.
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(1.2)

Here Q, is the region occupied by the beam; S, is the free surface of the body, n' is a
normal to S,; the body is fastened to the surface G (see Fig. 1); n' are the displacements;
Aijmn are known (see Washizu, 1982) combinations of the tensor of elasticity constants
e- 4aijmn and the initial stresses (JU' which, in the case under consideration, are taken in the
form

where

(1.4)

With the use of two-scale method (see e.g. Bensoussan et al., 1978) a functionf(x b x/e)
of the arguments x, and x/e is considered as function f(x b y) of "slow" variable x, and
"fast" variables y = x/e. In accordance with this note the functions aijmm (J*J:,) will be written
in the form aijmn(y), (J*J:,) (XI ,y). The functions aijm,,(y), (J*J:,l(x], y) are periodic in Yl with
period T corresponding to the period of the beam structures (T is projection of the PC P,
on the OYI-axis in the "fast" variables, see Fig. 1).

The stresses (Jij determined by the formula C;ij = Aijmn(x], y) iJu':n/iJxn are called the
additional stresses (see Washizu, 1982). For Ai/mn(x" y) determined by eqn (1.3), the
relationship between additional stresses (Jij and displacements u' takes the form :

(1.5)

The formula (l.5) can be considered as a local governing equation.
Note. In connection with the fact that the coefficients eqn (1.3) are written in a form

different from that normally used, we will comment briefly on the terms in eqn (1.3). The
tensor e-4aijmn describes the elastic constants of the material the beam is made of. The
multiplier e-4 guarantees that the bending stiffnesses of the beam will be non-zero, as e~ O.
The other terms describe the initial stresses. The term e-2b1j~) = e- 2c;*5;2)(),m cor
responds to the tension of the beam by a force which is independent of e. In fact, the axial
force is equal to the stress multiplied by the cross-section area, which has the characteristic
value equal to e2

• In the classical theory, the beam is buckling under the tension axial force
(corresponding to stresses e- 2(J*\j2»). If the tension force is zero, the local initial stresses
in the 3-D beam can be non-zero and can cause buckling. To take into consideration this
case, we introduce the term e-3bii;;,~l = e- 3c;*5;3)()im' The condition that the tension force
corresponding to (J*5;3) is zero, is written in the form:

(1.6)

Here <*) = T- I Jp\ * dy is the average value over the PC PI = {y = x/e: XEP,} in the
"fast" variables y.

2. ASYMPTOTIC EXPANSION

We will study global deformations of the beam, in particular, buckling in global forms,
as e~ O. To do this, we use the following asymptotic expansion proposed in the work by
Kolpakov (1991) :
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Asymptotic expansion for displacements

00

Ue = U(O)(Xl)+SU(l)(Xl,Y)+""" = U(Ol(X I)+ I SkU(kl (x 1,y),
k~1

asymptotic expansion for stresses

ex

(Jij = I eP(JW) (XI ,y).
P= ·-4

(2.1)

(2.2)

Here XI is a "slow" variable along the axis of the beam [-0, oj, y = x/e are the "fast"
variables. The functions in the right-side of eqns (2.1) and (2.2) are assumed to be periodic
in Yl with period T. Note, that the term ul°'(x[) in eqn (2.1) depends on the "slow" variable
Xl only. The expansion (2.4) is starting with a term of order of c 4 in accordance with the
governing eqn (1.5) and expansion (2.1) for displacements.

Analysis of the problem eqns (1.1 )~(1.4) breaks down into two stages. The first entails
obtaining the equations of equilibrium for the beam considered as a I-D structure. As in
the case of plates (see e.g. Caillerie, 1984), this stage is not involved with local governing
equations [in the case under consideration, with eqn (1.5)], and it is the same stage for any
governing equations.

There are the following equations for the forces introduced by the formula
NW1= «(JWl> and the moments introduced by the formula My/? = «jJ!lYfJ> (i, j = 1, 2, 3
and f3 = 2, 3) derived in the work by Kolpakov (1991):

(2.3)

(2.4)

(2.5)

(2.6)

Here M 1fJ are the bending moments, M = M~23) - M~33) means the turning moment.
The eqns (2.3)-(2.6) coincide with the classical ones.

Here and below the Latin indices take the values 1, 2, 3 and the Greek indices take the
values 2,3; ,Ix means %x t and ,jy means %Yj'

The following equations are satisfied for the (JWJ from the local stress expansions (see
Kolpakov, 1991):

Here S means the lateral (free) surface of PC PI (PI was determined above), n is the
normal to S (see Fig. I).

One can derive the eqns (2.7) substituting the expansion (2.2) into the local equilibrium
eqns (1.1), rewritten in the form o(JW/oxj = 0, and then equating the terms with identical
powers of e.

Relations (2.3)~(2.7) are independent of the local governing relations.
The second stage of analysis of the problem consists of obtaining the governing

equations for the beam as 1-D structure and the excluding of unknown quantities from the
equilibrium equations. In contrast to the first stage, this stage does involve local governing
equations and it is the main stage in our investigation.
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3. CASE OF NON-ZERO AXIAL FORCE

We begin our analysis with the case {oo*j;3) = 0, <00*\,2) =f O} corresponding to non
zero axial force.

With the use of two-scale expansion, the differential operators are presented in the
fonn of sum of operators in {xJ and in {yJ (see Bensoussan et al., 1978). For the function
f(XbY) of the arguments XI and Y = (Yb.hY3), as in the right-hand sides ofeqns (2.1) and
(2.2), this representation takes the form

(3.1)

Substituting eqns (2.1) and (2.2) into the local governing eqn (1.5), with allowance for
eqn (3.1) we obtain

'nx,

I f!oo~) = I ek(e--4aijmn+8-2bii~,~))(U~!lx6In+e-ju~!",,)
p~-4 k~O .

6;; = 1 and 6im = ° if i =f m.

Equating the terms with identical power of e in eqn (3.2), we obtain

As it was assumed above

U(k) (y) is periodic in Y I with period T, k = 1, 2, ....

(3.2)

(3.3)

(3.4)

(3.5)

Let us consider the problems (2.7) (p = -4), (3.3) (p = -4), (3.5) (k = I). Allowing
for the fact that the function of the argument XI plays the role of a parameter in the
problems in the variables Y and U(O) depends on XI' only, solution of the problems (2.7)
(p = -4), (3.3) (p = -4), (3.5) (k = 1) can be found in the form given in the work by
Kolpakov (1991)

(3.6)

Here {eJ are basis vectors of the coordinate system; U(y) = YrSyer (summation in y,
r is assumed) where SI = 0, S2 = -I, S3 = 1; r = 2 ify = 3 and r = 3 if}' = 2; V(x j ) is an
arbitrary function of the argument XI (it will be determined below).

One can verify formula (3.6) by substituting eqns (3.6) into eqns (2.7) (p = - 4), (3.3),
(3.5) (k = 1) with allowance for eqn (3.1).

Substitution of eqn (3.6) into eqn (3.3) gives the following equations

Let us examine the problems (2.7) (p = -3), (3.7), (3.5) (k = 2). In order to solve
problems of this kind, the so-called cellular problems are introduced (see e.g. Bensoussan
et al., 1978; Caillerie, 1984). In the case under consideration, we introduced the functions
XII(y), X 2a(y) (ex = 2,3) and X 3 (y) which are determined by solutions of the cellular
problems of the beam theory (see Kolpakov, 1991):

(aijmn(y)X~~ny+aijll(Y»)jy= ° in P lo

(aijmn(y)X:n~ny+aijll (y»nj = ° on S,

X II (y) is periodic in YI with period T; (3.8)
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(aijmn(y)X~~ny+aijll (Y)Yo)jy = 0 in PI'

(aijmn(y)X~~ny+aijl1(y)Yo)nj = 0 on S,

X 20 (y) is periodic in YI with period T;

(aijmn(y)X;,ny + aijyl (y)s,Yr)jy = 0 inP I ,

(aijmn(y)X;,ny+aijyl (y)syyr)n} = 0 on S,

X 3 (y) is periodic in YI with period T.

(3.9)

(3.10)

Here Smeans the lateral (free) surface of PC PI. n is normal to S (see Fig. I).
The solution of the problem can be expressed through the functions XII(y), X20(y),

X 3(y) as follows

(3.11 )

The proof of the formula (3.11) one can find in the work by Kolpakov (1991). One
can verify the formula (3.11) without applying the mentioned paper, substituting eqn (3.11)
into eqns (2.3) (p = -3), (3.5) (k = 1).

Note. The first term in the right-hand side of eqn (3.6) (corresponding to bending) is
a partial solution of the PC eqn (3.9). The second term in the right-hand side of eqn (3.6)
(corresponding to torsion) is a solution of the uniform problem corresponding to the PC
eqn (3.9), U(y) is the solution of the uniform problem corresponding PC eqn (3.9). Then,
from the mathematical point of view, the torsion is due to the degeneration of the PC eqn
(3.9) in the local variables in the domain corresponding to the beam. No situations like this
were mentioned early in the papers devoted to the homogenization analysis. The PCs,
considered in connection with the monolithic composite and plate, are not degenerated (see
e.g. Bensoussan et al., 1978 for the monolithic composites, Caillerie, I 984-for plates).

Substituting eqn (3.11) into eqn (3.7) we have

Averaging eqns (3.12) with zj = 11 over the PC PI. we obtain

(3.13)

Multiplying eqns (3.12) withj = 1 by YP and averaging over the PC PI. we obtain the
equations which can be broken down into two groups: equations for bending moments
M\(3) = (a\13)yp) and torsion moments M = M~23) - M~33) = (a~13)Y2)- (a~13)Y3):

M(~3) - lA V A 2 (0) +B'" M - Al V +A 2 (0) +B'"Ip - p 1.lx+ /ioUo.lxlx P'l'.lx, - 1,Ix oUo,lxlx 'I',lx'

The coefficients in the eqns (3.13) and (3.14) are the following

A = (alill (y)+allmn(y)X~~ny),

A~ = (allll(Y)YO+allmn(y)X~~ny),

b = (allyy(y)SyYr +allmn(y)X;.ny),

lAp = «(alII I(y) + allmn(y)X~~ny)Yp),

A~p = «(all I I (Y)Yo +allmn(y)X~~ny)YP),

(3.14)
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Bp = «(allyl (Y)SyYr +allmn(y)X~,ny)YP),

B = (a3lyl (Y)YrY2 )Sy - (a2lyl (Y)YrY3 )Sy + (a3Imn(y)X~,nyY2) - (a2Imn(y)X~,nYY3)'

A I = «(a3ll1 (y)+ a3Imn(y)X~~nY)Y2)- «(a2ll1 (y)+a2Imn(y)X~~nY)Y3)'

A~ = «(a3111 (y)y, +a3Imn(y)X~~nY)Y2)- «(a211 ](y)y, +a21mn(y)X~~nY)Y3)'

2853

The obtained eqns (3.13) and (3.14) are asymptotically exact governing equations of
the beam considered as a I-D structure. In the case under consideration these do not depend
on the initial stresses. The coefficients in the right-hand parts ofeqns (3.13) and (3.14) are
the stiffnesses of the beam. As we see, these are expressed through solutions of the PCs
eqns (3.8), (3.9) and (3.10). Note, that the derived governing equations coincide with the
classical ones in form, but the stiffnesses are calculated in other ways.

Let us denote the right-hand parts of the governing eqns (2.13) and (2.14) by
N(VI,lx, u~ixlx, </J,lx), Mp(V1,ln U~~IXIX' </J,lx), M(VI,lx, u~~ixln </J,lx), respectively. These
notations will be used in the next sections.

Investigating the equilibrium equations for the case of the absence of initial stresses
(when, due to aij-2) = a);-2), we have N;j-2) = N)i- 2)), one can exclude the quantities N;;2)
from eqns (2.5) and (2.6) using this symmetry with respect to the indices i and j, only,
without any additional information about N;j-2), as it was done in the paper by Caillerie
(1984). In our case Nij-2) does not have the symmetry with respect to the indices i and).
Then we need to examine N~-2) in detail, to obtain some additional information on them.

Let us insert d l
) into eqn (3.4) in accordance with eqn (3.6). Then we obtain

The first and second terms in the right-hand side of the present equation are symmetric
with respect to i and} by virtue of symmetry of the elastic constants (aijmn = ajimn)' Then the
relation below takes places

(-2) (-2) _ b(-2) (0) ( ) b(-2) (0) ( )+b(-2) A.( ) b(-2) A.( )aij -aji - ij,l U,.lx XI - ji.1 U.,lx XI ijyr Sy'!' Xl - jiyr Sy'!' Xl .

Averaging this equality over PC PI' we obtain

(3.15)

To continue our investigation, we need some facts about the average values of the
initial stresses.

Proposition I. Let the initial stresses at, which can be presented as
at = c 3a*;j-3) +t:- 2a*;j-2) +"', satisfy the equilibrium equations:

(3.16)

Then

(1) ifa# -4,b# -3,then(bij;;'~)Y,ny)=0;

(2) if a*L- 3) = 0 and a # -3, b # -2, then (bL;;'~) Y,ny) = 0

for every differentiable function Y(y) periodic in YI with the period T.
Taking into account the definition of b);;'~), one must prove that (a*);3) Y:ny) = O.

Substituting the expression at = t:- 3a*;j- 3) +t:- 2a*;;-2) + ... for the initial stresses into eqn
(3.16), with allowance for eqn (3.1), we obtain
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a~~j~3) = F; in PI (F; = 0 if a of- -4,£; = j; if a = -4),

a~(-3)nj=G; onS (G;=O ifaof--3,G;=g; ifa=-3),

a*~j-3}(Xl'y) is periodic in YI with period T. (3.17)

Let us consider the quantity <aj;3} Y,ny)' Taking into account the definition of the
average value over the PC Ph and integrating by parts, one can find that this quantity is
equal to

Here OJ means the opposite faces of PC PI normal to 0YI-axis (Fig. 1). The integrals
over PI and S are equal to zero as a consequence of eqn (3.17) (if a of- -4, b of- - 3). The
integral over OJ is equal to zero as a consequence of the periodicity of the functions a*j;3}
and Yand antiperiodicity of the vector-normal in YI (see Fig. 1). This proves statement (1)
of the proposition. Analogously, one can prove statement (2) of the proposition.

Proposition 2. Under the conditions of proposition 1, <a*~a- 3) >= 0 and
<a*\~3}Ya> = 0, and <a*~a-2}> = 0 when a*jj-3) = O.

Proposition 2 is a consequence of proposition 1. To prove the first and the third
equations, one can put Y = Ya' and Y = Y; to prove the second one.

Now, we can exclude the quantities N~j-2} from the equilibrium equations.
Bending. Consider the following equilibrium eqns (2.4) and (2.5). To exclude N\-;2),

apply the relations, which follow from eqn (3.15) and the definition of bjJ;;";) eqn (1.4) :

where Kp is defined by the formula

Kp = <b~l;l)u~~lx - <b\p;/ >u~~L + <b~I'Y2t)srep - <b\p/t)sAJ

= <a*\,2»c5pau~~lx +<a*\r2})c5p"syep.

Differentiating eqn (2.5) and using eqns (2.4) and (3.18), we obtain

(3.18)

(3.19)

(3.20)

Under conditions from proposition 1 (a of- -3,b of- -2) Kp = <a*\,2)u~~L then the
eqn (3.20) takes the classical form

(3.21 )

where N*\ ,2) = <a*\12» is the initial axial force.
Torsion. Here, as above, we encounter a situation connected with the asymmetry of

Mj- 2}, see eqn (2.6). In accordance with eqn (3.15) and the definition of b~j-;',;) eqn (1.4), we
obtain

where K is defined by the formula

Then eqn (2.6) can be rewritten in the form
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(3.22)

Under conditions from proposition 1 (a #- 3, b # - 2) K = O. It means, that the
initial stresses of the order e- 2 do not influence the torsion of the beam.

4. THE CASE OF ZERO AXIAL FORCE, NON-ZERO MOMENTS

We consider now the case {0"*&-3) # O,0"*lj-2) = O} and 0'*~i-3) satisfy the condition
(1.6)-zero axial force.

Substituting eqns (2.1) and (2.2) into the local governing eqn (1.5), with allowance for
eqn (3.1), we obtain in the case under consideration

C1) C1)

" ~P (p)_" k( -4 + -3b(-3»)( (k) ~ + -I (k»)I-. c- O"ij - I-. e e aijmn e Umn Um.lxUnl e Um.ny ·
p= -4 k=O

Equating the terms with identical power of e in eqn (4.1), we obtain

(4.1)

O"lj-3) = aijml (y)u~,t +b&~f)(y)u::;,t +aijmn(Y)u;;,~y +b&~~)(y)u~,~y,

0"&-2) = aijml (y)u;;,t + b)j~f) (y)u~.\x + aumn(Y)u;,:,~y + b&~~)(y)u;;,~Y' (4.2)

Let us consider problem (2.7) (p = -4) with O'lj-4) given by eqn (4.2) and condition
(3.5) (k = 1). As above, its solution u(l) is given by the formula (3.6).

Substitution of eqn (3.6) into eqn (4.2) gives the following equations

0'&-3) = aiJmn(Y)u;;,~y +aijll (Y)Yau~?IxIAxd+aijll (y) Vi,lAXl)

+ aiirl (Y)SyYr¢(X I ),Ix + (blj-;?) (y) - b&I:)(Y))u~?Ix(x I) +b&;?)sy¢(xd· (4.3)

Under conditions of the propositions 1, see eqn (3.17), blj~~jy = O"*~iJ;)<5im = 0 in PI
d b(-3) - *(-3)~ - 0 S Th h .. b(-3) h . flan ijmn nj - 0" nj Uimnj - on. en, t e terms conta101Og ijmn ave no 10 uence on

the solution, and, solving the problem (2.7) with 0':j-3) given by eqn (4.3), one can put

That expression coincides with eqn (3.7). Then the solution of the problem under
consideration is given by the formula (3.11). Substituting eqn (3.11) into the second
equation from eqn (4.3), we obtain

O'~j- 3) = (aijmn(y)X~~ny + aijll (y)) V1,lxCX I ) + (aijmn(y)X~~ny + aijll (y))u~?IxIAxI)

+ aijmn(y)X~,ny +aijyl (Y)SyYr)¢,IAx I) + (b)J;13) (y) - b)jl:)(Y))U~?ix(xl) +b);;?)Sy¢(X I)' (4.4)

Averaging eqn (4.4) with ij = 11 over the PC PI and taking into account the definition
of blJk/) and propositions 2 and 3, we obtain

(4.5)

where N(V1,lx, u~?lxlx, ¢,Ix) is determined in Section 3.
Multiplying eqn (4.4) withj = 1 by YP and averaging over the PC Ph we obtain, taking

into account the definition of b~Jk/) eqn (1.4), definition of the bending and torsional
moments, condition (1.5) and propositions 2 and 3.
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M (-3) - M (V (0) A.. )+C (0)
lP - P 1.1x, !ia,lxlx, 'f',lx paUa.lx,

(4.6)

Here Mp(VI,lx, U~~iX1X' cP,lx), M = M(Vl,lx, U~~IXlx, cP,IJ are determined in Section 3.
The coefficients on the right-hand side of eqn (4.6) are the following

Cpa = «bl,;i-bl,!DYp) = _<IT*l~3)yp),

Co = «b~,;I-b~,!DY2 -(b~,;I-b&,!DY3)

= <IT*l,3)Y2)<>3a-<lT*l,3)Y3)<>20'

J= <b~,NsYY2)-<b&,;fsYY3)= _<IT*l;3)Y2)-<lT*l3 3)Y3)' (4.7)
Deriving eqn (4.6) and eqn (4.7), we take into account definition of b~Jk/) eqn (1.4).
Let us exclude the quantities Nij- 2

) from the equilibrium eqns (2.4) and (2.5) (as it was
noted, equilibrium equations are the same for all the cases under consideration). To do
this, we examine N~j- 2) .

In the case under consideration [see eqn (4.2)] IT}j-2) is the sum of the terms symmetric
with respect to i andj (the first and third terms) and the terms asymmetric with respect to
i andj (the second and fourth ones). One can find that the relation below takes place

Proposition 3. Under conditions of proposition 1 «b~J;"~) -bji-;;'~»U;;,~y) = O.
To prove the proposition is enough put Y = u;;) into proposition 1.
Substituting eqn (3.6) into eqn (4.8) and taking into account the proposition 3, we can

rewrite eqn (4,8) as

N~j-2) = Nji- 2)+ «b~j,l) - bji,l»Ya)u~~lxlx + «b~7/) -bj;;/»Yr )SycP,lx

+ <b~j-;;.jl-bji-;;'~» Vm,lx' (4,9)

In accordance with proposition I and condition (1.5), the last term in the right-hand
side of eqn (4.9) is equal to zero.

Applying the formula (4.9), one can exclude the quantities Nij-2) from the equilibrium
equations.

Bending. Taking into account definition of b~j-;;'~) eqn (1.4), one can derive from eqns
(2.4) and (2.5) and eqns (4.6) and (4.9) the following equation

(4.10)

Here

(4.11)

where

k «b(-3) b(-3») < *(-3) )po = PIll - IPII Yo = - IT Pi Yo ,

B = 3 if f3 = 2, and B = 2 if f3 = 3; Mp(Vl,lX' U~~id" cP,IJ is determined in Section 3.
Torsion. One can derive from eqns (2.6), (4.6) and (4.9) the following equation



Here

where
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(4.12)

M(V1,lx, ui?lxlx, 4>.IX) is determined in Section 3.
Note, that all the coefficients determined by eqn (4.7), (4.11) and (4.12) can be written

as the combinations of moments of the initial stresses M*~a-3) = <0-*~13)Ya>:

By virtue of symmetry of the initial stresses o-*~; 2) with respect to i and j, and prop
osition 2, M*~p 3) = O. Then Cpp = 0, J = 0, k = 0, and the non-zero coefficients in eqn
(4.13) are the following

(4.14)

The index B was determined in the previous section.

5. THE LIMIT l-D PROBLEM

Let us write the obtained model for the special case, when the initial stresses are
proportional parameters: 0-*~j-2) = A(-2)0-?/-2), 0-*~;-3) = A(-3)0-~(-3) (A(-2), }.(-3) are the par-
ameters) and satisfy the conditions of proposition 1. Then the equations of the limit model
can be written in the following form :

In all the cases

N,lx =0.

In the case {o-*(~ 3) = 0 o-*\~ 2) .J- O} .
1) 'IJ r .

In the case {0-*&-3) ¥= 0,0-*&-2) = O} and eqn (1.6):

Mp(V1,lx, ui?lxLo 4>,lx),lxlx = A(-3) {[ - CpBu~L],lxIX +[kpBU~1xlx +kp4>,lxLx},

M(Vl,lx,U~?lxIX' 4>,lx).lx = A(-3)[Caui?lxllX"

(5.1)

(5.2)

(5.3)

CPB, Ca, k pB, k pare determined byeqn (4.14); the functions N, M p, M are determined
in Section 3; no sum in {3, Bin eqn (5.3) ; the index B was determined above.

The boundary conditions are

for all the cases.
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Adding the eqns (5.2) and (5.3) one can obtain the two parameter ().(-2) and A(-3»)
model.

The problems (5.1)-(5.3) with the boundary conditions can be considered as an
eigenvalue problem, describing the buckling of the beam. The models (5.1) and (5.2)
coincide with the classical equations qualitatively.

Considering eqn (5.3) with the boundary equations, one finds, that in the case
{a*;j- 3) #- 0, a*~i- 2) = °}-zero axial force--the buckling of the beam can be caused by the
moments.

6. THE CASE OF THE UNIFORM HOMOGENIZED INITIAL STRESSES

Let the initial stresses depend on x/e, only (do not depend on Xl)' Then, the average
value over the PC PI does not depend on Xl (see e.g. Kalamkarov and Kolpakov, 1997)
and CfJ~' C" kfJ" k fJ , k are constants, and eqn (5.2) can be written as

(6.1)

and eqn (5.3) can be written as

(6.2)

Using eqn (4.14), one can find that --CfJB+kfJB = M*~p3)-M*~83) = M*(-3)SB, and
rewrite eqn (6.2) in the form

M (V (0) d.) - ,1,(-3)[ M*(-3) (0) +M*(-3)d. ]fJ I,lx, U,.ixlx, 'f',lx .lxlx - - SfJUB.lxlxlx ifJ 'f',lxix SB,

no sum in (J, B here.
In eqn (6.3) M*~13) are bending moments, the M*(-3) = M*~23) -M*~33) is torsion

moments corresponding to the initial stresses.
Note. The axial force N*\1 2

) and the moments M*\p3), M*(-3) may be introduced both
by averaging the local stresses a*\1 2

) and the local moments a*~1-3)YfJ and by solving the 1
D problem describing the initial state of a beam with no initial stresses (i.e. the I-D problem
with no initial stresses). Both the methods give the same result. This follows from the paper
by Kolpakov (1991). The first method incorporates a beam structure in an explicit form.
The second method does not incorporate a beam structure explicitly. In the second method
a beam structure is incorporated through the stiffnesses of the beam [see comment on the
formulas (3.13) and (3.15)].

7. CYLINDRICAL BEAM: COMPARISON WITH THE CLASSICAL CASE

As it was demonstrated by Kolpakov (1994), for the classical cylindrical beam made
of isotropic material the stiffnesses A, A~, b, IA fJ , A;fJ' BfJ' B coincide with ones derived on
the basis of the plane section hypothesis. Then, eqns (5.1) and (5.2) coincide with the
classical equations both qualitatively and quantitatively.

8. CONCLUSIONS

Application of the two-scale asymptotic method to the model of 3-D stressed body
give a 1-D beam model.

The I-D model has the form Mx = Lx, where M is a I-D operator describing a beam
with no initial stresses (the coefficients of the operator M, that is, stiffnesses are calculated
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on the basis solution of the cellular problems), and L is a l-D operator incorporating the
initial stresses.

The order of the initial stresses relative to the characteristic diameter of the beam plays
a significant role in the problem. For the case of non-zero axial initial force the asymptotic
analysis gives the classical 1-D beam model in which the operator L is expressed in terms
of axial force corresponding to the initial stresses. For the case of zero axial initial force
the asymptotic analysis gives a I-D beam model in which the operator L is expressed in
terms of moments of the initial stresses.
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